首页> 外文OA文献 >Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV)
【2h】

Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV)

机译:使用小型无人驾驶飞机(UAV)上可见到短波红外光谱范围的高光谱框架相机对泥炭产地的3-D几何形状和表面湿度进行遥感

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Miniaturized hyperspectral imaging sensors are becomingavailable to small unmanned airborne vehicle (UAV) platforms.Imaging concepts based on frame format offer an attractivealternative to conventional hyperspectral pushbroom scannersbecause they enable enhanced processing and interpretation potentialby allowing for acquisition of the 3-D geometry of theobject and multiple object views together with the hyperspectralreflectance signatures. The objective of this investigation was tostudy the performance of novel visible and near-infrared (VNIR)and short-wave infrared (SWIR) hyperspectral frame camerasbased on a tunable Fabry–Pérot interferometer (FPI) in measuringa 3-D digital surface model and the surface moisture of a peatproduction area. UAV image blocks were captured with groundsample distances (GSDs) of 15, 9.5, and 2.5 cm with the SWIR,VNIR, and consumer RGB cameras, respectively. Georeferencingshowed consistent behavior, with accuracy levels better than GSDfor the FPI cameras. The best accuracy in moisture estimation wasobtained when using the reflectance difference of the SWIR bandat 1246 nm and of the VNIR band at 859 nm, which gave a rootmean square error (rmse) of 5.21 pp (pp is the mass fraction inpercentage points) and a normalized rmse of 7.61%. The resultsare encouraging, indicating that UAV-based remote sensing couldsignificantly improve the efficiency and environmental safety aspectsof peat production.
机译:小型化的高光谱成像传感器正变得可用于小型无人飞行器(UAV)平台。基于帧格式的成像概念是传统的高光谱推扫式扫帚扫描仪的一种有吸引力的替代方案,因为它们通过允许获取物体和多个物体的3-D几何形状而增强了处理和解释潜力物体视图以及高光谱反射签名。这项研究的目的是研究基于可调Fabry-Pérot干涉仪(FPI)的新型可见光和近红外(VNIR)和短波红外(SWIR)高光谱框架相机在测量3D数字表面模型和光学模型方面的性能。泥炭产区的表面水分。使用SWIR,VNIR和消费者RGB相机分别以15、9.5和2.5厘米的地面采样距离(GSD)捕获无人机图像块。地理配准显示出一致的行为,对于FPI摄像机,其精度等级优于GSD。当使用1246 nm处的SWIR谱带和859 nm处的VNIR谱带的反射率差时,水分估计的最佳准确性得到了均方根误差(rmse)为5.21 pp(pp是质量分数的百分点)和归一化均方根值为7.61%。结果令人鼓舞,表明基于无人机的遥感可以显着提高泥炭生产的效率和环境安全性。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号